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Abstract. Dissonance is easy. Consonance is rare. We want scales and tunings 

that give different flavors of consonance, without being too complex, and with 

small errors. Regular Temperament Theory (RTT) is a powerful tool, reducing 

the problem to approximating a few small prime numbers, and generating tunings 

by stacking a few intervals called generators. RTT opens a middle ground be-

tween just intonation and equal temperaments that goes far beyond meantone, 

applying linear algebra to discover new temperaments that balance complexity 

and error in different ways while providing harmonies that do not exist in con-

ventional tunings. We introduce the theory and list some open problems. 
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1 Introduction 

This paper describes an application of linear algebra to an area of music theory called 

Regular Temperament Theory (RTT), whose purpose is to access novel harmonies 

based on ratios of small whole numbers up to 13 or so, without just intonation’s com-

plexity in number of notes, number of different step sizes, and difficulty of modulation. 

This comes at a cost in tuning accuracy. Various tradeoffs are possible. 

Its development began around 1998 in a public online forum known as the tuning 

list [1], facilitated by Mills College, Oakland, California. The first author was involved 

from the beginning of that collaboration. Other major contributors to the theory were 

Paul Erlich [2], Graham Breed [3], Gene Ward Smith [4] and Mike Battaglia [5]. The 

theory has roots going back to the 1970s and earlier, with George Secor [6], Erv Wilson 

[7] and Adriaan Fokker [8]. Some composers who enriched this collaboration were Joe 

Monzo [9], Herman Miller, Margo Schulter, Dan Stearns, and Joseph Pehrson. 

In January 2021 we set out to make the field more accessible. After surveying the 

existing resources, many including abstract algebra (group theory) and exterior algebra 

(wedge products), we laid out an approach covering all practical needs with linear al-

gebra alone, giving examples in Wolfram Language. We replaced jargon and eponyms 

with consistent descriptive terms, and standardized unique variable letters and their 

styling. Finally, we reframed the basics of tuning optimization in favor of flexibility 

and real-world musical considerations, rather than mathematical purity or 
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computational efficiency. This paper is a summary of the first 6 of 10 chapters in the 

resulting online textbook [10].  

Milne et al summarized a part of this theory to generate keyboard layouts [11]. 

2 Mapping Just Primes to Temperament Generators 

RTT allows us to generate new pitch systems (tunings) prior to scale generation and 

composition. The input vectors of this theory represent justly-intoned intervals modeled 

as frequency-ratios whose numerator and denominator are small positive integers. We 

represent them as prime-count vectors whose entries are integers that give the counts 

(or exponents) of successive primes in the prime factorization of the ratio, with negative 

counts for the denominator. For example, the interval of a just major third is a frequency 

ratio of 5/4 = 5/(2×2) = 2⁻²×3⁰×5¹ which is represented as the column vector 

𝐢 = [‑2 0 1]ᵀ. We can call them "PC-vectors", but to avoid confusion with "pitch class 

vectors" we can simply call them "vectors" in RTT, where it is conventional to use a 

variant of Dirac’s bra-ket notation. 𝐢 = [-2 0 1⟩. 
A row vector is a linear map. For example, the just(-prime) tuning map 𝒋 = 1200 × 

log₂(⟨2 3 5]) = ⟨1200.0 1902.0 2786.3] can be used to obtain the size of a just interval 

in cents. e.g. for the just major third, 𝒋𝐢 = ⟨1200.0 1902.0 2786.3] [-2 0 1⟩ = 386.3 ¢. 

A regular temperament is a temperament that can be represented by a rectangular 

integer matrix that corresponds to a linear mapping from prime-count vectors to integer 

vectors of lower dimensionality called generator-count vectors (GC-vectors). This ma-

trix is called the temperament mapping matrix, or simply the mapping.  

For example, 12-tone equal temperament (12-ET) is represented by the single-row 

mapping 𝑀 = [12 19 28], which tells us that there is a single generator and that prime 

2 is approximated by 12 generators, prime 3 by 19 generators, and prime 5 by 28 gen-

erators. From this we can deduce that the generator is an approximate semitone. This is 

confirmed when we map the just major third: 𝐲 = 𝑀𝐢 = [12 19 28] [-2 0 1⟩ = [4⧽. We 

use a curved angle bracket to distinguish a GC-vector from a (PC-)vector. The single 

entry of 4 means the just major third is approximated by 4 generators, in this case 4 

semitones. 

We can think of the vector entries as having units of primes 𝗽 and the GC-vector 

entries as having units of generators 𝗴, and so the mapping entries have units of gener-

ators per prime 𝗴/𝗽. 

We said the generator was an approximate semitone because this way of defining 

temperaments leaves open the exact tuning of the generators. That belongs to a separate 

optimization phase. All we need to know at this stage is that the generator is 1/12 of an 

approximate octave. We do not assume pure octaves or octave-equivalence. 

Equal temperaments have mapping matrices with rank 𝑟 = 1, and so are called rank-

1 temperaments. So far, our input vectors have dimensionality 𝑑 = 3 and are known as 

5-limit vectors (after the highest prime). A mapping matrix is always full-rank and so 

it is an 𝑟 × 𝑑 matrix.  

Meantone is a well-known rank-2 temperament, dating from the early 1500s. It is 

conventionally described as having a generator that is a slightly-narrow perfect fifth, 
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an approximate 3/2 ratio (~3/2). But from RTT’s point of view, meantone has two gen-

erators, the first one being an approximate octave (~2/1). It is well known that meantone 

approximates a just major third (~5/4) using a stack of four fifths, octave-reduced. So 

it approximates prime 5 (2786.3 ¢) by a stack of four fifths (4 × ~700 = ~2800 ¢). 

We can write the corresponding meantone mapping as 𝑀 = [
1 1 0
0 1 4

]. 

Looking at each column in turn, we see that prime 2 is approximated by one of the first 

generator, prime 3 by one of the first generator plus one of the second generator, and 

prime 5 by four of the second generator. 

With more than one row, our mapping matrix is no longer unique. We can perform 

elementary integer row operations to find alternative mappings for meantone, associ-

ated with different generators. For example, we could use an octave and a perfect fourth 

(~4/3) as the generators. Since the fourth is the octave minus the fifth, we can perform 

the inverse operation on the rows of the mapping, adding the second row to the first 

and negating the second, to obtain 𝑀 = [
1 2 4
0 -1 -4

]. 

This shows the need for a canonical form for mapping matrices, so we can recognize 

when different procedures give the same temperament. A first pass at a canonical form 

is to use Hermite normal form (HNF), integer analog of RREF. In Wolfram Language: 

hnf[a_]:= Last[HermiteDecomposition[a]].  

And we obtain 𝑀 = [
1 0 -4
0 1 4

]. 

We can see that the first generator approximates prime 2 on its own, as before, so it 

is an approximate octave. The second generator approximates prime 3 on its own, so it 

is an approximate perfect twelfth (~3/1). 

 

Fig. 1. Mapping just primes to temperament generators 

We have so far obtained the meantone mapping by considering the generators. An-

other way is by "cross-breeding" equal temperaments. Both 12-ET and 26-ET can be 

considered as supporting (rather extreme) tunings of meantone. The 5-limit mapping 

for 26-ET is [26 41 60]. If we stack the two ET mappings, we have 𝑀 = [
12 19 28
26 41 60

]. 

Taking the HNF we obtain 𝑀 = [
2 0 -8
0 1 4

]. 

The latter would be the canonical meantone mapping except for a common factor of 

2 in the top row. We say the matrix is enfactored. This is musically wasteful as half of 

the generator count vectors would not correspond to the tempering of any interval. Note 
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that the common factor is hidden in the original matrix. The HNF may not reveal the 

common factor either. It may only become apparent in some far-from-obvious linear 

combination of the rows, using coprime integer multipliers (if not coprime, they would 

be introducing rather than revealing a common factor). A simple defactoring (or satu-

ration) algorithm, which works even in these hidden cases, consists in performing a 

column-wise Hermite decomposition, keeping only the unimodular matrix, inverting it 

and taking the top 𝑟 rows, where 𝑟 is the rank. Taking the HNF of that yields our final 

canonical form which we call defactored Hermite form (DHF). In Wolfram Language:  
dhf[m_]:= hnf[Take[Inverse[Transpose[First[ 

HermiteDecomposition[Transpose[m]]]]], MatrixRank[m]]] 

Meantone equates the tones 10/9 and 9/8, hence the name. This means that their quo-

tient, the syntonic comma 81/80 = [-4 4 -1⟩, is in the nullspace of the mapping, and 

since nullity is dimensionality minus rank, 𝑛 = 𝑑 – 𝑟 = 1, this comma alone forms a 

basis for the nullspace. So the mapping matrix can be obtained as the dual of the comma 

basis matrix [[-4 4 -1⟩], which in this case has only one column (vector). If this was a 

7 limit (4D) rank-2 temperament, a second comma would vanish, such as 225/224, and 

the comma basis would have two columns [[-4 4 -1 0⟩ [5 -2 -2 1⟩]. In Wolfram Lan-

guage: 

dualMapping[c_]:= dhf[NullSpace[c]] (NullSpace is its own inverse) 

When we apply this to the comma basis consisting only of the syntonic comma, we 

again obtain the canonical meantone mapping. 

If we apply the canonical meantone mapping to the vector for the just major third 

we obtain the GC-vector 𝒚 = 𝑀𝐢 = [-6 4⧽. This says that the meantone-mapped major 

third consists of 4 of the approximate twelfth generators minus 6 of the approximate 

octave generators. The concepts covered in this section are summarized in Fig 1. 

3 Tuning Optimization 

Now for the optimization phase. We seek a generator tuning map 𝒈 = ⧼~1200 ~1900] 

whose entries are optimal generator sizes. With 𝒈 we could obtain the size of any tem-

pered interval in cents as 𝒈𝐲 = 𝒈𝑀𝐢 analogous to obtaining the size of a just interval as 

𝒋𝐢. Therefore, the error in cents of a tempered interval is e = 𝒈𝑀𝐢 – 𝒋𝐢 = (𝒈𝑀 – 𝒋)𝐢. 
An optimal 𝒈 would minimize the audible harm done to the just intervals we care 

about. For a single interval we model this harm as the damage d, defined as the absolute 

value of the error multiplied by some positive weight 𝑤, so d = |e|𝑤. The weight is 

typically one of three things: unity (unweighted) 𝑤 = 1, or some measure of the com-

plexity of the interval 𝑤 = 𝑐, or the reciprocal of a complexity, called a simplicity, 𝑤 = 

1/𝑐. The interval complexity measure is typically some pre-scaled power-norm 𝑐 = 

||𝑋𝐢||𝑞 where 𝑋 is a diagonal (scaling) matrix. The most common complexity measure 

scales each entry by the base-2 log of its prime, then takes the taxicab norm: 𝑋 = 

diag(log₂([2 3 5 …])), 𝑞 = 1. This is called the log product (lp) complexity as it is equal 

to the log of the product of the numerator and denominator of the corresponding ratio.  

The target-interval list T is the list of intervals whose damage we care about; the 

fewer, the less damaged each can be. It may be chosen from a type of music, or the 
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intervals playable on an instrument, but a useful default is the truncated integer-limit 

triangle (TILT). This begins as a triangular table of the ratios >1 between the positive 

integers less than the prime after the temperament's prime limit; for the 5-prime-limit 

this is the 6-integer-limit and for the 7-prime-limit it is the 10-integer-limit. We then 

remove intervals smaller than 15/13 (247.7 ¢) and larger than 13/4 (2040.5 ¢). See [10]. 

So for 5-limit meantone we suggest the 6-TILT, which consists of the eight intervals 

2/1, 3/1, 3/2, 4/3, 5/2, 5/3, 5/4, 6/5, converted to prime-count vectors and placed side-

by-side to form a target-interval list T, a 𝑑 × 𝑘 matrix where k is the number of target 

intervals. See Fig. 2. 

 

Fig. 2. Tuning optimization 

We then compute the target-interval error list as 𝐞 = (𝒈𝑀 – 𝒋)T, and for this run we'll 

compute the target-interval weight list 𝒘 as the log product complexities of the target 

intervals. We then turn the weight list into a diagonal weight matrix 𝑊 = diag(𝒘) and 

compute the target-interval damage list as 𝐝 = |𝐞|𝑊, where |·| is entry-wise absolute 

value. In terms of the generator tuning map 𝒈, the damage list is 𝐝 = |(𝒈𝑀 – 𝒋)T𝑊|. 

Popular statistics for the overall damage are the maximum damage ⟪𝐝⟫∞ and the 

RMS damage ⟪𝐝⟫₂, and therefore the popular optimization procedures are minimax 

and miniRMS (least squares). The double-angle-brackets are our notation for power-

means, by analogy with power-norms.  

MiniRMS has the advantage of a simple closed-form solution for 𝒈 involving the 

Moore-Penrose inverse, 𝒈 = 𝒋T𝑊(𝑀T𝑊)⁺. In Wolfram Language: 
g = j.t.w.PseudoInverse[m.t.w] 

The result is 𝒈 = ⧼1201.5 1898.2]. We call this the TILT miniRMS-C tuning for mean-

tone. The "C" stands for "complexity weight". To obtain the size of the more conven-

tional generator, the fifth, we can subtract the first generator from the second to obtain 

696.7 ¢. For reference, 𝐞 = [1.5 -3.8 -5.3 6.8 -1.2 4.1 -2.6 -2.6] ¢. 

A minimax value for 𝒈 can be found using: MaxIterations->100; 

NMinimize[ Max[Abs[(g.m-j).t.w]], g∈Vectors[2,Reals] ] 

And we find that the TILT minimax-C tuning for meantone is 𝒈 = ⧼1198.0 1892.7]. So 

the fifth is 694.7 ¢, and 𝐞 = [-2.0 -9.3 -7.2 5.2 -5.4 1.8 -3.4 -3.8] ¢. 

The minimax tuning found by this method is often not unique. In such cases, what 

we really want is the limit of the 𝒈s that minimize the 𝑝-mean of the damages ⟪𝐝⟫𝑝 as 

𝑝 approaches infinity. We can use the following Wolfram Language code, replacing the 

"2" with successive powers of 2, until the generators change by less than, say, 0.1 ¢. 

Numeric precision may need to be increased to avoid spurious results. 

NMinimize[ Total[((g.m-j).t.w)^2], g∈Vectors[2,Reals] ] 
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We can also include constraints, such as holding some intervals unchanged by the 

tuning — typically the octave. A list of vectors can be assembled into a held-interval 

basis H, applying the constraint that 𝒈𝑀H = 𝒋H. In Wolfram Language: 
NMinimize[ { Total[((g.m-j).t.w)^2], g.m.h==j.h }, …] 

4 Conclusion 

Although we used meantone as a familiar example, an extraordinary example is George 

Secor’s miracle temperament [6], 𝑀 = [
1 1 3 3 2
0 6 -7 -2 15

]. Its held-octave 12-TILT 

minimax-U generators are 𝒈 = ⧼1200.0 116.72] ¢ with a maximum unweighted damage 

of 3.32 ¢. A 21-note-per-octave miracle scale has only two step sizes, contains many 

melodic subset scales, and supports a network of 11-(prime)-limit harmony that would 

require many times that number of notes in JI. Its rediscovery in 2001 started a "gold 

rush" that led to the development of the tools described above, and many others. 

Searches were conducted both by combining commas and by combining ETs. 

Open problems regarding temperaments include: staff notation, family classifica-

tion, anti-JI intervals [12], refining search criteria (including complexity × damage = 

badness measures), and psychoacoustic experiments to validate them. 

Many temperaments have been cataloged in the Xenharmonic Wiki, where you will 

also find many details that were omitted from this paper due to space limitations, in our 

extended exposition entitled D&D's Guide to RTT [10]. 

We thank Paul Erlich, Graham Breed, Mike Battaglia, Keenan Pepper, Sintel, Kite 

Giedraitis, Flora Canou, and the two anonymous reviewers for improving this paper. 
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